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APPLICATION OF CONTINUUM DISLOCATION THEORY
TO GEOMETRY OF LODERS FRONT
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Department of Metallurgical Engineering. Tokyo Institute of Technology, Ookayama, Meguro-ku,
Tokyo, Japan

Abstract-The geometry of Liiders band fronts was considered from the energy minimum criterion, The elastic
energy was calculated from the internal stress field produced by the constraint imposed on the Liiders band by the
adjoining regions,

To calculate this internal stress, the continuum theory of dislocation was utilized. The calculation indicated
the existence of the particular inclination angle of the stable Liiders fronts, which agreed with the prediction
of the theories of Hill and Nadai when the Poisson ratio is zero.

1. INTRODUCTION

THE dislocation theory has been used for the study of the strength of metals and for the
microscopic explanation of plastic deformation of crystalline materials. On the other hand,
the classical theory ofcontinuum plasticity such as bending, torsion and punching problems
has been re-examined on the basis of the knowledge of properties of individual dislocations
[1,2J, In these studies, the sum of dislocation stress and applied stress, both of which are
derived from the theory of elasticity, constitutes the stress field in continuum plasticity,

In a simple tension test, plastic deformation usually occurs uniformly throughout a
specimen and no dislocation is introduced into the specimen in a statistical sense. However,
certain materials exhibit non-uniform deformation in a simple tension test. This non
uniform deformation is characterized by the presence ofLUders bands, which alone undergo
plastic deformation, Therefore, dislocations are present at the edge of a LUders front which
separates a plastic region (a Liiders band) from an undeformed region [3, 4]. These disloca
tions produce an internal stress field. The presence of internal stresses is also known from
macrosco.pic considerations. For there is constraint imposed on the plastic region by the
adjoining undeformed region. The presence of internal stresses produces an increase of
elastic ehergy. The internal stress and the elastic energy associated with a LUders band
depend on the geometry of the Liiders front. Thus, when a Liiders band takes a particular
geometry, the elastic energy takes a minimum value while other conditions such as plastic
strain in the Liiders band are kept constant. This particular geometry corresponds to the
stable geometry ofa LUders front according to the energy minimum principle. In the present
paper, the internal stress produced by formation of a Liiders band will be calculated with
the aid of the dislocation theory and the stable geometry of a LUders front will be discussed
after calculating the elastic energy associated with a Liiders band.

Geometry of LUders bands has been treated by Hill [5] and Nadai [6]. In these theories,
the direction of a Liiders front coincides with that along which the plastic extension
vanishes. This situation is considered not to introduce much constraint on the plastic
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domain from the adjoining undeformed region. However, in these theories, account was
not taken of the internal stress. The present study starts from recognition of this internal
stress. It will be shown that the indication of the present calculation coincides with the
prediction of Hill's and Nadai's theories in a particular case, which reflects the significance
of the role played by the mutual constraints between the plastic region and the undeformed
regIOn.

2. MODEL AND CALCULATIONS

Let us consider a flat tensile sheet specimen under a uniaxial tensile stress ITA along
the X 3 direction. Suppose a narrow plastic zone (a LUders band) is formed which inclines at
angle (.J from the tensile direction, as shown in Fig. 1. For convenience, the width of the
plastic zone, w, is assumed to be small compared to the specimen dimensions. The volume
constant law requires that

(1)

FrG. 1. Definition of coordinate axes with respect to the tensile direction and the plastic zone.

where Ell' En and E33 are the diagonal components of the plastic distortion tensor eij in
the plastic zone. Let r be the ratio of lateral plastic contraction along the x2 direction to
the tensile plastic elongation along the X 3 direction. Then, because of equation (1),

(0 ~ r ~ 1). (2)
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If plastic deformation in the plastic zone is assumed to occur symmetrically with respect to
the sheet plane and the tensile direction, the off-diagonal components of the plastic dis
tortion all vanish. Therefore, the plastic distortion Ejj is given by

lJij= (-(1~r)1J33 -~e33 ~.) (3a)

o 0 e33

inside the plastic zone and

(3b)

outside the plastic zone. If the (x'[, x~, x~) coordinate system is introduced, as shown in
Fig. 1, the plastic distortion lJ;j in this system is expressed as

e; 1 = -(I-r)e33{H(x~)- H(x; -w)}

E;z = (cos 2 0-rsinzO)e33{H(x;)-H(x;-wH

e~3 = (sinz O-r cosz O)e33{H(x~)-H(x~ -w)}

e~3 = e~z (l+r)sinOcosOe33{H(x~)-H(x;-w)}

(4a)

(4b)

(4c)

(4d)

where H(x) is the Heaviside unit step function.
According to the theory of continuum dislocations [3,4], the dislocation density

tt.~j is given by

Here tt.~j is the xj component of the net Burgers vector of the dislocations threading a unit
area normal to the x~ axis, and ehli is the unit permutation tensor. From equations (4) and (5),
we have

tt.~l = -(iJe'1l/8x;) = (l-r)E33{O(x;)-t5(x; w)}

tt.'12 = 8e~z/iJx~ = (cos2
() r sin2 e)e33 {t5(x;)-t5(x; -wH

(;(;3 = 8e~3/8x; = (l+r)sinecosee33{J(x;)-J(x;-w)),

(6a)

(6b)

(6c)

where J(x) is the Dirac delta function. The other components of lX~jare zero. The geometrical
meaning of equation (6a) is that the edge dislocations lying along the x; axis with the
infinitesimal Burgers vector parallel to the x'[ axis are continuously distributed on the
boundaries (x~ = 0 and x; 11') between the plastic zone and non-plastic zone. The
magnitude of Burgers vector of the infinitesimal edge dislocation lying in the width dX'j
on the boundary x; = 0 is (1- r)e33 dX~. A similar understanding of geometrical meaning
applies to equations (6b) and (6c). These infinitesimal edge dislocations on the boundary
x; = 0 are schematically shown in Fig. 2.

The internal stress fields due to the above continuous distributions of the infinitesimal
dislocations can be constructed from the integration of the stress field ofa single dislocation.
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FIG. 2. Schematic presentation of dislocation distributions at the front of a plastic zone.

For example, the stress due to the continuous dislocation C(~ 1 on the boundary x~ = 0 is
calculated as

/1(1 - rJ' rT x' {3(x' - X' )2 + X,2 1
t 3 I 1 3 f dX'

='2-(1 .)[;33 {" X"2 ,'212 In -~ ~-f (X 1 - d +x3 f

Jl(l - r)
---10

1-1' 33

o
Jl(l- r)

----I;'1_ V '33

(x~ > 0)

(x~ = 0)

(x~ < 0),

(7a)

, Jll'(l-r) I' X~d'- f. X
(J22- n(I_v) '33 (X'~X')2+x'2 1

- x . I 1 3

JlI'(1- r)
---f.33I-v

o
I1v(1-r)

10 33I-v

(x~ > 0)

(x~ = 0)

(x~ < 0),

(7b)

and

(J~l =

(7c)

(7d)

(7e)
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where J.1 is the shear modulus and v the Poisson ratio. In a similar manner, the stress due
to the presence of continuous dislocations CC'lZ and CC'13 distributed on the boundary x; = 0
can be calculated. Superimposing these stress fields, we obtain the internal stress due to
the dislocations cc~ l' CC~ 2 and CC'13 on the boundary x; = 0 as follows:

J.1 v(cos2 () - r sin2 ())} (x; > 0)1- /33{(I-r)

<1'11 = 0 (x; 0)

J.1 r) v(cos2 () - r sin2 ())} (x; < 0),--1-c33{(1
-v

~C33{v(l-r)-(cosZ()-r sin2 ())) (x; > 0)
I-v

<1~z = 0 (x; = 0)

-~C33 {v(l- r) -(COSZ()-r sin2 ())) (x; < 0).
I-v

(8a)

(8b)

(9a)(0 < x; < w)

The other components of <1;j are zero.
The total internal stress of the specimen due to the dislocations on the boundaries

x; = 0 and x; = w is constructed from the results shown in equation (8), since the Burgers
vectors of the dislocations on the boundary x; = ware opposite in sign to those of the
dislocations on the boundary x; = O. The results are

<1'11 = ~c33{(I- r)- v(cos2 ()- r sin2 ())}
I-v

and

(9b)(0 < x; < w)<1~Z = ~c33{v(I-r)-(cosZ ()-rsin2 ()))
I-v

and all other components are zero. However, the above solution of equation (9a) is
physically unacceptable, since flat sheet surfaces of the specimen are free from tractions.
Therefore, a traction which cancels <1'11 in equation (9a) is applied. This will cause disturb
ance in other stress components in the neighborhood of the boundary of the plastic zone.
However, for simplicity this disturbance is neglected. The final result of the stress distribu
tion is shown in Fig. 3, where only the non-vanishing component, <1~2' is represented.

----~o>----_-..lt..--o...-------..... N;

FIG. 3. Distribution of internal stress.
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3. ENERGY CONSIDERATION AND INCLINATION ANGLE
OF LODERS FRONTS

Next, we will find the particular angle of Ltiders front inclination at which the specimen
is mechanically stable, from the criterion of the energy minimum principle. The energy
needed for consideration of mechanical stability is the elastic energy of the specimen plus
the change of the external potentiaL However, the increase of the elastic energy and the
change of the external potential related to the elastic deformation of the specimen have
nothing to do with the plastic deformation. Therefore, these terms are omitted. Further,
once the volume and the plastic strain of the plastic zone are prescribed, the change of the
external potential by the plastic deformation is independent of the inclination angle, 8, of
the plastic zone. Therefore, the stability of the specimen under the condition of the pre
scribed volume and plastic strain of the plastic zone can be considered by examining the
variation of the elastic energy of the specimen with respect to the inclination angle. By
using the internal stress shown in Fig. 3, this elastic energy, Es ' is calculated as

(10)

(11)

where V is the prescribed volume of the plastic zone. A stable direction of the plastic zone
is found under the conditions dEs/dO 0 and d2 Eid82 > O. This is achieved when (J takes
particular values of Be given by

. jl-V(l-r)sm () = + .
e - 1+r

It is evident that this energy minimum is attained when the internal stresses all vanish.
The angle Be is plotted against r for several representative values of the Poisson ratio in
Fig. 4.

;:::::::::::::~~~~45
T

o
T

A.v=O

B'v=O'28
C.v=O·33
D'v=O·40

0·5
r

j·O

. FIG. 4. Relation between the equilibrium angle of a plastic zone and the value, r.
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4. DISCUSSION
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As shown above, the energy minimum criterion requires the existence of a particular
inclination angle of the stable Liiders fronts. This inclination angle depends not only on
the ratio r but also on the Poisson ratio of the material. It is seen that when the Poisson
ratio is zero, the prediction of the present study, equation (11), agrees with the formula
given by Hill [5]. Nadai's postulate [6] that a Liiders front is formed along the zero
extension direction also agrees with equation (11) when the Poisson ratio is zero. The
reason for the above agreements is not clear at present. However, it is believed that this
indicates the importance of the lateral constraint on a Liiders band imposed by the
adjoining undeformed zones.

However, when the Poisson ratio is not equal to zero, the energy minimum is not
achieved when Hill and Nadai's criterion is satisfied, and the angle predicted by equation
(II) is always smaller than that for the case of v = O. As seen in Fig. 4, the effects of the
Poisson ratio are prominent where r is close to zero. For example, when r = 0, a material
with v = 0 takes ee = 90° while a practical material with v between 0·25 and 0·35 takes
ee between 60 and 54°.

Druyvesteyn et al. [7] examined the direction of deformation bands in the case where
plastic deformation is not symmetric with respect to the tensile direction and in which
plastic distortion in the bands is given by

o

in the present notation. The present model can also deal with the above situation. After
performing the calculations and using the arguments in Sections 2 and 3, above, the
following results are obtained. The non-vanishing component of the internal stress is a~2

and is given by

a~2 = 1
2J1

[C33 {v(1- r) - (cos2 e- r sin2 e)} - (c23 + cd sin ecos e]
-v

within the band. The elastic energy, Es ' is

The elastic energy takes a minimum value when a~2 in the deformed band is zero. This is
achieved when the inclination angle is given by

e (c32 +C23)± J(C32 +C23)2 +4{r+ v(l-r)} {l- v(l- r)}C~3
tan = . (12)

e 2{r +v(1- r*33

When v = 0, this result becomes identical to that of Druyvesteyn et al. They used Nadai's
criterion (zero extension along the band direction) and Hill's theory to calculate the angle e.

In some metal single crystals, the slip bands are seen to propagate through a tensile
specimen as Liiders bands. When there is an active slip system, whose slip plane normal
and slip direction are parallel to the specimen surface, the situation considered in the
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preceding paragraph is directly applied, by taking r = 1, E33 (yI2) sin 2a and (E 23 + E32 ) =
-y cos 2a. Here, y is the plastic shear distortion carried by the plastic zone along the slip
direction on the slip plane and rY. is the angle between the tensile direction and the slip
direction. Equation (12) predicts the inclination angle of the plastic zone given by

() = (X or () = a+ n12.

These two conditions are well understood from the dislocation theory. The first condition
corresponds to the case where all the dislocations glide out of the specimen. The second
condition is equivalent to the configuration in which the edge dislocations advancing at
the tip of the glide planes in the Liiders band form a small angle boundary of the tilt type.
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AOCTparIT-Ha OCHOBe KpllTepHH MHHIlMyMa 1Hepnm, Hccne.nyeTcSl reOMeTpHSl lPPOIlTOB nonoc JIH.nepca.
Ynpyralt :meprHlt no.nC'lHTaHa In nOJlSl BllyTpeHHhlx llarrpSllKeHHH, Bh13BaHHhlX CBWlaMIl IIp"Coe,llHHeHHblx
paROHOB, HanOlKeHHhlMH Ha rronocy JIH.nepca. XlJlSl paC'leTa >TIlX BHyTpeHHhlX HarrpSllKeHHll, HCnOJlh1yeTcSl
CnJIOWHaSl Teopllll ,llHCJIOKal\IlH. PaCqeT YKa1h1saeT HaflH'lIIe qaCTHOro yrJla HaKflOHa cTa6HflbHhlX <!>POHTOB
J1H,llepca, I(OTOpOe COrJlaCoByeTcSl c npe.nCKa1aHHSlMI1 TeopHH XHflfla H HanaH, nflSl CflY'laea, Korna KO,<!>
cjIHQl1eHT nyaccoHa paaeH HyflKl.


